高二数学教学计划
时间过得太快,让人猝不及防,我们又将接触新的知识,学习新的技能,积累新的经验,让我们对今后的工作做个计划吧。相信大家又在为写计划犯愁了?下面是小编为大家整理的高二数学教学计划,仅供参考,欢迎大家阅读。
高二数学教学计划1
教学目标:
1. 知识与技能目标:
(1)了解中国古代数学中求两个正整数最大公约数的算法以及割圆术的算法;
(2)通过对“更相减损之术”及“割圆术”的学习,更好的理解将要解决的问题“算法化”
的思维方法,并注意理解推导“割圆术”的操作步骤。
2. 过程与方法目标:
(1)改变解决问题的思路,要将抽象的数学思维转变为具体的步骤化的思维方法,提高逻
辑思维能力;
(2)学会借助实例分析,探究数学问题。
3. 情感与价值目标:
(1)通过学生的主动参与,师生,生生的合作交流,提高学生兴趣,激发其求知欲,培养探索精神;
(2)体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。
教学重点与难点:
重点:了解“更相减损之术”及“割圆术”的算法。
难点:体会算法案例中蕴含的算法思想,利用它解决具体问题。
教学方法:
通过典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑
结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。
教学过程:
教学
环节 教学内容 师生互动 设计意图
创设 情境
引入新课 引导学生回顾
人们在长期的生活,生产和劳动过程中,创造了整数,分数,小数,正负数及其计算,以及无限逼近任一实数的方法,在代数学,几何学方面,我国在宋,元之前也都处于世界的前列。我们在小学,中学学到的算术,代数,从记数到多元一次联立方程的求根方法,都是我国古代数学家最先创造的。更为重要的是我国古代数学的发展有着自己鲜明的特色,也就是“寓理于算”,即把解决的问题“算法化”。本章的内容是算法,特别是在中国古代也有着很多算法案例,我们来看一下并且进一步体会“算法”的概念。
教师引导,学生回顾。
教师启发学生回忆小学初中时所学算术代数知识,共同创设情景,引入新课。
通过对以往所学数学知识的回顾,使学生理清知识脉络,并且向学生指明,我国古代数学的发展“寓理于算”,不同于西方数学,在今天看仍然有很大的优越性,体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。
阅读课本 探究新知
1. 求两个正整数最大公约数的算法
学生通常会用辗转相除法求两个正整数的最大公约数:
例1:求78和36的最大公约数
(1) 利用辗转相除法
步骤:
计算出78 36的余数6,再将前面的除数36作为新的被除数,36 6=6,余数为0,则此时的除数即为78和36的最大公约数。
理论依据: ,得 与 有相同的公约数
(2) 更相减损之术
指导阅读课本P ----P ,总结步骤
步骤:
以两数中较大的数减去较小的数,即78-36=42;以差数42和较小的数36构成新的一对数,对这一对数再用大数减去小数,即42-36=6,再以差数6和较小的数36构成新的一对数,对这一对数再用大数减去小数,即36-6=30,继续这一过程,直到产生一对相等的数,这个数就是最大公约数
即,理论依据:由 ,得 与 有相同的公约数
算法: 输入两个正数 ;
如果 ,则执行 ,否则转到 ;
将 的值赋予 ;
若 ,则把 赋予 ,把 赋予 ,否则把 赋予 ,重新执行 ;
输出最大公约数
程序:
a=input(“a=”)
b=input(“b=”)
while a<>b
if a>=b
a=a-b;
else
b=b-a
end
end
print(%io(2),a,b)
学生阅读课本内容,分析研究,独立的解决问题。
教师巡视,加强对学生的个别指导。
由学生回答求最大公约数的两种方法,简要说明其步骤,并能说出其理论依据。
由学生写出更相减损法和辗转相除法的算法,并编出简单程序。
教师将两种算法同时显示在屏幕上,以方便学生对比。
教师将程序显示于屏幕上,使学生加以了解。 数学教学要有学生根据自己的经验,用自己的`思维方式把要学的知识重新创造出来。这种再创造积累和发展到一定程度,就有可能发生质的飞跃。在教学中应创造自主探索与合作交流的学习环境,让学生有充分的时间和空间去观察,分析,动手实践,从而主动发现和创造所学的数学知识。
求两个正整数的最大公约数是本节课的一个重点,用学生非常熟悉的问题为载体来讲解算法的有关知识,,强调了提供典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。为了能在计算机上实现,还适当展示了将自然语言或程序框图翻译成计算机语言的内容。总的来说,不追求形式上的严谨,通过案例引导学生理解相应内容所反映的数学思想与数学方法。
高二数学教学计划2
一、指导思想
本学期高一备课组以学校教务处、教研组、年级组工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,互相学习,认真备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,认真贯彻学校提出的“先学后教”的课堂教学改革方案,抓好基础知识教学,着重学生能力的培养,打好基础,全面提高,争取优异的成绩。
二、教学目标
使大多数学生能够掌握高中数学基本知识,解决问题的基本能力,提高学生的数学素养。使多数学生能够进入高一级学府继续学习,提高学业水平测试的合格率以及优秀率。
复习作为知识巩固的一个有效方法在学习中必不可少。而复习课中例题的精选很重要,是否能起到温故而知新的.作用。对应的复习课之后的配套练习与作业的反馈的落实也是复习的一个重要环节。因此如何精选专题复习例题与落实作业反馈成了我们备课组的关注点。
三、教学措施
这学期的学习内容对学生来说,整体上偏难,特别是运算能力在这学期将得到深化和强化,所以对教师的要求也必将高。在教学内容方面,我们还是主要按照我们学生的特点,对症下药,讲清基本题,理顺中档题,适当补充难题;普通班不追求偏和难,特别对圆锥曲线部分的一些重点、难点的计算题,必须详细讲解给学生听,有些问题甚至需要多讲解几遍,让绝大部分学生真正落实到位。每位教师上完课之后需要思考三个问题:我这节课上得如何?有谁的课比我还优秀?怎样上这节课更好、最好并在备课笔记上做好记录,为以后的教育教学提供参考。在课课练上,以基本题为主,重点在中档题上,做错的问题要抓落实,不放弃任何一个学生,不放过任何一个问题。在课堂上,每位教师都要重视板书,因为学生的书写不规范部分来源于教师的板书,每节课最低有1~2题在书写上力求规范。
四、教学要求
整体把握新课程,理清贯穿教材的主要脉络,反映和揭示教学内容的内在联系,展示重要概念的来龙去脉。完成新课标要求,培养学生的数学兴趣,发展学生的数学应用意识。还要渗透高考要求,倡导自主学习方式,逐渐提高学生的思维能力,养成独立思考、积极探索的习惯,注重数学思想和方法的渗透,注重数学思维能力的培养。
五、具体工作
为了能够将集体备课落到实处,集体备课做到统一时间,统一地点,确定主要内容。
(1)按上周集体备课中预先确定备课章节,各位教师论轮流发言,指出备课中的思路,重点和难点。
(2)然后就上述内容请备课组全体成员共同讨论教学任务中的有关教学大纲,疏通教材,指出重难点,列举一些典型例题,精选练习题等,并请有教学经验的老师做必要的解释、说明和补充,备课组长认真做好记录,对于一些认识分歧比较大的地方,认真讨论,达成共识。
(3)讨论下周教案的编撰的具体事宜,确定四至五课时内容的个体教学目标、重难点、例题选编及作业的布置。
(4)最后就当前的教学及工作情况,请备课组各成员相互交流,提出建议,说出不足,并由备课组长记录整理,为以后的教学计划或集体备课的适当调整提供第一手宝贵资料。
以上几点就是我们高二数学组在本学期的工作计划,代表我们全体高二数学教师的工作打算,我们一定能够落实好学校和部门的任务,并能够按照自身的特点和所教班级的具体情况认真做好自己的教育教学工作。希望在我们全体教师的努力下,在期末联考中能取得辉煌的成绩。
高二数学教学计划3
一、教学目标
(一)知识与技能
1.通过探究学习使学生掌握几何概型的基本特征,明确几何概型与古典概型的区别.
2.理解并掌握几何概型的概念.
3.掌握几何概型的概率公式,会进行简单的几何概率计算.
(二)过程与方法
1.让学生通过对随机试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,培养学生观察、类比、联想等逻辑推理能力.
2.通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法.
(三)情感、态度、价值观
1.让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价一些随机现象.
2.通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的.能力.
二、教学重点与难点
教学重点:了解几何概型的基本特点及进行简单的几何概率计算.
教学难点:如何在实际背景中找出几何区域及如何确定该区域的“测度”.
三、教学方法与教学手段
教学方法:“自主、合作、探究”教学法
教学手段: 电子白板、实物投影、多媒体课件辅助
四、教学过程
五、板书:几何概型的概念:设D是一个可度量的区域(例如线段、平面图形、立体图形等).每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点。
这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比。
我们把满足这样条件的概率模型称几何概型.
板书:几何概型的概率计算公式:
高二数学教学计划4
※教学目标:
知识与技能:
1、掌握空间直角坐标系的建立过程和相关概念
2、学会在坐标系中找出空间点的位置,会写一些简单几何体中有关点的坐标
过程与方法:
1、经历运用空间直角坐标系来描述空间图形的过程,初步建立数感和空间感,从空间的点的坐标培养学生的空间想象能力、抽象思维和探索能力。
2、通过类比、迁移、的方法得出空间直角坐标系的建立的过程和空间点
的坐标确定的方法。
情感、态度与价值观:
1、让学生认识到数学与日常生活的密切联系,从而能够积极的参与数学的学习活动。
2、通过学生的自主学习和合作学习,培养学生合作精神。
※教学重、难点:
重点:空间直角坐标系的建立,点在空间直角坐标系中的坐标表示
难点:通过建立适当的空间直角坐标系来确定空间点的坐标,以及相关的应用。
※教学准备:
教师准备:制作本节图4.3-1、图4.3-2、图4.3-3、图4.3-4、图4.3-5和食盐
晶体模型的投影片
学生准备:直尺和正方形纸片
※教学过程:
(一)问题情境、导入课题
【投影】问题1、数轴Ox上的点M,用代数的方法怎样表示呢?
问题2、直角坐标平面上的点M,怎样表示呢?
问题3、怎样确切的表示室内灯泡的位置?
(学生复习回顾后回答问题1和问题2,思考、讨论后回答)
【点拨】1、问题1和问题2是确定点在直线和直角坐标平面的位置的方法。
2、问题3是空间点的位置确定的问题,我们可以类比平面直角坐标的方法,建立空间直角坐标系来确定空间点的位置(板书课题)
(二)师生互动、探究新知
1、空间直角坐标系的建立
【投影】问题4、空间中的点M用代数的方法又怎样表示呢?
(教师设问)空间直角坐标系该如何建立呢?
【投影】(1)直角坐标系的建立过程
如图:OABC-DABC是单位正方体,以O为原点,分别以射线OA,OC,OD的方向为正方向,以OA,OC,OD的.长为单位长,建立三条数轴: x轴、y 轴、z 轴.这时我们说建立了一个空间直角坐标系O-xyz,其中点O 叫做坐标原点, x轴(横轴)、y 轴(纵轴)、z 轴(竖轴)叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz平面、zOx平面.(引导学生仔细观察和理解)
【说明】①三条数轴两两相互垂直且相交于原点O,同时都有相同的单位长度
②任意两条确定一个平面,共有三个平面,称坐标平面
③三个坐标平面把空间分成8个部分(让同学动手操作亲历感受)
【投影】(2)空间直角坐标系的画法
(3)右手直角坐标系
2、空间点的坐标表示
【投影】合作探究:
有了空间直角坐标系,那空间中的任意一点A怎样来表示它的坐标呢?
(设问)平面直角坐标系中的点与坐标有着一一对应关系,那么在空
间直角坐标系中点与三维有序实数组之间也有一一对应关系
吗?(学生自行阅读教材P134)
【点拨】是一一对应关系。
3、坐标平面及坐标轴上的点的特征
【投影】练习:如图,OABC—A’B’C’D’是单位正方体.以O为原点,分别以射线OA,OC, OD’的方向为正方向,以线段OA,OC, OD’的长为单位长,建立空间直角坐标系O—xyz.试说出正方体的各个顶点的坐标.并指出哪些点在坐标轴上,哪些点在坐标平面上y
(师生共同完成后,投影幻灯片)
【投影】想一想?
在空间直角坐标系中,x、y、z坐标轴上的点、xoy、xoz、yoz坐标平面
内的点的坐标各有什么特点?
(学生思考、讨论后教师总结)
(三)典型例题、解释应用
【投影】例1:如图在长方体OABC-A1B1C1D1 中,|OA|=3,|OC|=4,|OD1|=2,写出点D1,C,A1,B1的
坐标及BB1的中点M的坐标和A1AOO1的对角线的交点N的坐标.. 目标:学生在教师的指导下完成,加深对点的坐标的理解.
(解的分析和过程见投影)
【投影】例2:结晶体的基本单位称为晶胞,下图是食盐晶胞的示意图(可看成八1个棱长是的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表绿2
原子.如图建立空间直角坐标系,试写出全部钠原子所在的位置的坐标.
目标:教师引导学生先阅读教材,根据建立的空间直角坐标系,写出所求
点的坐标.
(解的分析和过程见投影)
( 四)随堂练习、巩固新知
练习1、教材P136练习第2小题
(五)课堂小结、温故知新
1、空间直角坐标系的建立
2、空间直角坐标系的画法
3、空间直角坐标系中点的坐标表示方法及点与坐标的一一对应关系
(六)布置作业
教材P136练习第1、3小题。
(七)板书设计:
4.3.1空间直角坐标系
一、空间直角坐标系的建立
1、建立过程
2、空间直角坐标系画法
3、空间直角坐标系是右手系
二、空间坐标系中点的坐标表示方法
三、坐标系中特殊点的坐标特征
1、坐标轴上点的坐标特征
2、坐标平面上点的坐标特点
四、例题分析
高二数学教学计划5
一、本课教学内容的本质、地位、作用分析
(一)教材所处的地位和前后联系
本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.
(二)教学重点
①简单随机抽样的概念,
②常用实施方法:抽签法和随机数表法
(三)教学难点
对简单随机抽样概念中“每次抽取时各个个体被抽到的概率相等”的理解.
二、教学目标分析
1、知识目标
(1)理解并掌握简单随机抽样的概念、特点和步骤.
(2)掌握简单随机抽样的两种方法:抽签法和随机数表法.
2、能力目标
(1)会用抽签法和随机数表法从总体中抽取样本,并能运用这两种方法和思想解决有关实际问题.
(2)灵活运用简单随机抽样的方法解释日常生活中的常见非数学 问题的现象,加强观察问题、分析问题和解决问题的能力培养.
3、情感、态度目标
(1)培养学生收集信息和处理信息、加工信息的实际能力,分析问题、解决问题的能力.
(2)培养学生热爱生活、学会生活的意识,强化他们学生活的'知识、学生存的技能,提高学生的动手能力.
三、教学问题诊断
本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.
如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。
1、创设情境,揭示课题
用多媒体展示情景:新闻报道全国高校毕业生就业率问题。举例说明一些实际问题,提出统计的概念。并提出思考问题: 如何收集数据? 请同学们举例说明.,请学生自由发言,对学生的发言进行补充,辨析普查与抽样调查。提出抽样调查的必要性。从实际问题入手,提出抽样调查的科学性。教师对学生的发言进行补充,同时向学生介绍我们所要研究的简单随机抽样、系统抽样、分层抽样都是不放回抽样.今天我们就来学习简单随机抽样.(板书课题)
2、学法指导,研探新知
思考1:
从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?
一般地,从N个个体中任意抽取一个,则每个个体被抽到的概率是多少?
思考2:
从6件产品中随机不放回抽取一个容量为3的样本,在这个抽样中,每一件产品被抽到的概率是多少?
一般地,从N个个体中随机抽取n个个体作为样本,则每个个体被抽到的概率是多少?
规律总结:
一般的,如果用简单随机抽样,个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的概率都相等。 .
3 实际运用,巩固升华
简单随机抽样体现了抽样的客观性和公平性,如何实施简单随机抽样呢?
①抽签法
提出问题学校要进行庆典,每个班到主会场观看节目有6个名额,高二(24)班共有57人,怎样分这6个名额? 要求:每个学生获得名额的概率相等小组讨论设计操作步骤。
. 学生很容易联想到抽签法这时我又抛出一个问题:那如何实施抽签法?学生能根据生活中的经验来实施抽签法引导学生从解决这个问题的方法得出抽签法的一般步骤:
先将总体中的所有个体(共有N个)编号(号码可从1到N)并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.
②随机数表法
请你设计分配方案:
5·12特大地震后,都江堰某地区198户地震损毁户需要搬进安居房,规模创造了全国之最.近期首批20套安居房准备发放.要求:每户首批获得安居房的概率相同 ,从而提出随机数表法的概念
随机数表法:为了简化制签过程,我们借助计算机来取代人工制签,由计算机制作一个随机数表,我们只需要按照一定的规则,到随机数表中选取在编号范围内的数码就可以,这种抽样方法就是随机数表法。
步骤:
(1)将总体中的所有个体编号(每个号码位数一致)
(2)在随机数表中任取一个数作为开始。
(3)从选定的数开始按一定的方向(或规则)读下去,得到的号码若不在编号中,则跳过;若在编号中则取出;如果得到的号码前面已经取出,也跳过;如此继续下去,直到取满为止。
(4)根据选定的号码抽取样本。
4、动手操作,合作交流
学生亲自动手进行抽签,体会抽签的公平性。
5、承上启下,留下悬念
回到开篇提到的实际问题,引出抽样还有其他方法。
四、教法分析和学法指导
(一)教法分析
1、讨论法与自学法相结合
改变传统的把学生看作是接受知识的“容器”的现象.让学生参与到教学活动的全过程中来,体现学生参与的主体地位,使学生手、脑、口并用,主动地获取知识,允许学生争论,在讨论中加深学生对知识的理解与掌握.如在解决“整个抽样过程中每个个体被抽到的概率是相等的”时组织学生讨论,在讨论的过程中使学生对这一难点有一个清楚的认识;又如在学习随机数表法时组织学生自学,既提高了学生独立学习、主动获取知识的能力又能满足学生在自学的过程中获得的成就感从而培养了自信心.
2、指导法
结合一些具体事件,如对用抽签法解决问题等事件进行分析,从而使学生对简单随机抽样过程有一个清楚的认识,加深对简单随机抽样方法的理解.
3、利用多媒体辅助教学
(二)学法指导
(1)通过丰富的例子引入数学知识,引导学生应用数学知识解决实际问题,教会学生从生活中发现数学,学习数学,如学生从生活的实例发现问题得出简单随机抽样方法就是从生活
中发现数学,用数学解决实际问题.
(2)教会学生独立思考、自主探索、动手实践、合作交流的学习数学的方式,体现在整个教学过程中,如“研探新知”、“实际运用”等.
五、预期效果
学生能够用简单随机抽样方法,解决部分实际问题。
高二数学教学计划6
一、教学内容
本学期文科数学内容为苏教版普通高中课程标准实验教科书(必修)3、选修系列1-1两册全部内容,根据情况决定是否上一点系列3的选讲内容。
二、教学指导
1、认真研究和学习新课程数学课程标准的教学要求。通过学习,明确高中数学课程的总目标和具体目标,准确把握每一个知识点的教学难度,切实领会新大纲、新教材的意图,力求恰到好处的教学成效。
2、教学应注意突出新课程理念,要突出新课程的教学六环节,特别是情境创设、问题建构、学生活动,但反对盲目套用,要重视让学生体会、发现知识的发生过程,要注重培养学生数学地提出问题、分析问题和解决问题的'能力,发展学生的创新意识和应用意识,要提高数学探究能力、建模能力和交流能力,进一步发展学生的数学实践能力,这也是新课程标准的核心要求。
3、教学要注重基本知识、基本技能、基本方法的掌握,要面向全体学生,绝不能将新授课上成高三的复习课,练习要以课本为主,适当补充难易适中的课外习题,保证学生经过自身努力能基本完成。要体会教材循序渐进、螺旋上升的编写意图,更要领会《标准》和《教学要求》的精神,准确把握好“度”,切忌将选修内容纳入必修课程。
4、教学要注重激发学生学习数学的兴趣,使学生树立学好数学的信心,形成实事求是的科学态度和锲而不舍的钻研精神,认识数学的科学价值和人文价值,从而进一步树立辨证唯物主义的世界观,实实在在地在培养学生数学素养上下功夫。
5、要尽可能在每学期结束按要求完成教学任务,既不要提前,也不要滞后。以便于全区统一调查测试。要准确理解改革以后的高考新导向和08年广东省高考方案,使教学确实具有实效性、针对性和科学性。
6、系列3的课程可以按讲座形式开设,每本书开设一、两次即可,主要是布置任务以学生自学为主,以拓宽学生的知识面为目的。另外,望能结合教学内容,安排适度的阅读、调研、实践等研究性学习活动。
7、月考单独出题。命题原则是面向全体学生,以课本例、习题为主,采用高考试卷模式,适当渗透高考要求,充分保护学生学习数学的积极性。
8、试卷分值、试卷结构、考试时间待定,难度系数为0.60—0.65。
9、培优补差按分部要求安排。在期末对培训内容进行一次质量检测。
三.教研活动
1.充分利用有利条件——课组成员在一个办公室,每天研究讨论第二天的内容,教法。总结当天的得失之处。
2.每周四开本组教研会,集体备课并讨论研究布置下周的教育教学此文转自任务。
3.本学期每人上一堂公开课,计划上交教学处。
4.培优补差任务按轮流负责知识点的方法。培优内容为必修五,补差内容为本学期难点。
5.每个知识点的学案,单元检测,假期作业,各种考试试卷轮流出题,具体安排每周课组会上讨论通过。
6.争取做一个课题,具体内容与安排由科组合议。
高二数学教学计划7
一、教学目标
1.掌握高中数学基本知识和方法,提高数学素养。
2.培养学生的数学思维能力和创新精神。
3.培养学生的数学兴趣,提高学生的学习积极性。
二、教学内容
1.函数及其应用
2.三角函数
3.解析几何
4.数列与数学归纳法
5.概率统计
三、教学方法
1.以学生为主体,采用启发式教学法。
2.引导学生自主学习,注重课堂互动。
3.通过实例讲解,提高学生的应用能力。
4.注重数学思想的启发和培养学生的创新精神。
四、教学重点和难点
1.函数及其应用中的函数概念、函数的性质、函数的图像、函数的应用等。
2.三角函数中的角度制、弧度制、三角函数的概念、三角函数的'性质、三角函数的图像、三角函数的应用等。
3.解析几何中的直线方程、圆的方程、二次曲线的方程、平面向量等。
4.数列与数学归纳法中的数列概念、数列的通项公式、等差数列、等比数列、数学归纳法等。
5.概率统计中的事件与概率、随机事件的概率、条件概率、独立事件、数理统计等。
五、评价方式
1.期中考试:占总成绩的30%。
2.期末考试:占总成绩的50%。
3.平时成绩:占总成绩的20%。
六、教学计划
第一周:函数及其应用
第二周:函数及其应用
第三周:三角函数
第四周:三角函数
第五周:解析几何
第六周:解析几何
第七周:数列与数学归纳法
第八周:数列与数学归纳法
第九周:概率统计
第十周:概率统计
第十一周:复习
第十二周:期中考试
第十三周:函数及其应用
第十四周:三角函数
第十五周:解析几何
第十六周:数列与数学归纳法
第十七周:概率统计
第十八周:复习
第十九周:期末考试
七、总结
通过本学期的数学教学,学生们不仅可以掌握基本的数学知识和方法,还可以培养数学思维能力和创新精神。同时,通过启发式教学法的运用,学生们可以更好地理解数学知识,提高学习效果。希望学生们能够认真学习,积极参与,取得优异的成绩。
高二数学教学计划8
一、有计划的安排一学期的教学工作计划:
新学期开课的第一天,备课组进行了第一次活动。该次活动的主题是制定本学期的教学工作计划及讨论如何响应学校的号召,开展主体式教学模式
的教学改革活动。
一个完整完善的工作计划,能保证教学工作的顺利开展和完满完成,所以一定要加以十二分的重视,并要努力做到保质保量完成。
在以后的教学过程中,坚持每周一次的关于教学工作情况总结的备课组活动,发现情况,及时讨论及时解决。
二、定时进行备课组活动,解决有关问题
备课组将进行每周一次的活动,内容包括有关教学进度的安排、疑难问题的分析讨论研究,数学教学的动态、数学教学的改革与创新等。一般每次
备课组活动都有专人主要负责发言,时间为二节课。经过精心的准备,每次的备课组活动都将能解决一到几个相关的问题,各备课组成员的教学研
究水平也会在不知不觉中得到提高。
三、积极抓好日常的教学工作程序,确保教学工作的有效开展
按照学校的'要求,积极认真地做好课前的备课资料的搜集工作,然后集体备课,制作成教学课件后共享,全备课组共用。一般要求每人轮流制作,
一人一节,上课前两至三天完成。每位教师的电教课比例都要在90%以上。每周至少两次的学生作业,要求全批全改,发现问题及时解决,及时在
班上 评讲,及时反馈;每章至少一份的课外练习题,要求要有一定的知识覆盖面,有一定的难度和深度,每章由专人负责出题;每章一次的测验
题,也由专人负责出题,并要达到一定的预期效果。
四、积极参加教学改革工作,使学校的教研水平向更高处推进
本学期学校全面推行主体式的教学模式,要使学生参与到教学的过程中来,更好地提高他们学习的兴趣和学习的积极性,使他们更自主地学习,学
会学习的方法。积极响应学校教学改革的要求,充分利用网上资源,使用分组讨论式教学,充分体现以学生为主体的教学模式,不断提高自身的教
学水平。
高二数学教学计划9
一、教材分析。
1、教材地位、作用。
本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
2、学情分析。
学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
二、教学目标。
1、知识与技能目标。
(1)理解等可能事件的概念及概率计算公式。
(2)能够准确计算等可能事件的概率。
2、过程与方法。
根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。
3、情感态度与价值观。
概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。
三、重点、难点。
1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、教学过程。
1、创设情境,提出问题。
师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?
通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。
2、抽象思维。形成概念、
师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?
生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。
师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?
生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。
师:那基本事件有什么特点呢?
问题:
(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?
(2)事件“出现偶数点”包含了哪几个基本事件?
由如上问题,分别得到基本事件如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
(让学生交流讨论,教师再加以总结、概括)
让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力
例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?
师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。
解:所求的基本事件共有6个:
____________________________________________________________________________________。
由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。
师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的.基础上再进行补充)
试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;
试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;
例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;
经概括总结后得到:
①试验中所有可能出现的基本事件只有有限个;
②每个基本事件出现的可能性相等。
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。
3、概念深化,加深理解。
试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。
试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。
这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。
4、观察比较,推导公式。
师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)
生:试验二中,出现各个点的概率相等,即
P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)
由概率的加法公式,得
P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1
因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=
进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,
P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==
P(“出现偶数点”)=?=
师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?
生:_________________________________________________________________。
学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。
师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:
①要判断该概率模型是不是古典概型;
②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
5、应用与提高。
例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:
探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?
解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:
P(“答对”)=1/15
解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
例3:同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
(教师先让学生独立完成,再抽两位不同答案的学生回答)
学生1:
①所有可能的结果是:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。
②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。
③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得
学生2:
①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。
由表中可知同时掷两个骰子的结果共有36种。
②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。
③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得
师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)
生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。
师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。
本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。
6、知识梳理,课堂小结。
(1)本节课你学习到了哪些知识?
(2)本节课渗透了哪些数学思想方法?
7、作业布置。
(1)阅读本节教材内容
(2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题
(3)选做题课本134页习题B组第1题
8、教学反思。
本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。
本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。
高二数学教学计划10
(一)20xx年秋季班高二数学大纲
讲次高二理科第1讲计数原理第2讲概率初步第3讲必修模块复习
(一)(集合、函数)第4讲必修模块复习
(二)(三角函数与正余弦定理)第5讲必修模块复习
(三)(数列、不等式)第6讲必修模块复习
(四)(解析几何、立体几何、向量)第7讲简易逻辑第8讲轨迹与椭圆第9讲双曲线与抛物线第10讲直线与圆锥曲线第11讲圆锥曲线综合第12讲空间向量与立体几何第13讲立体几何综合第14讲知识点睛及期末考试第15讲试卷分析及期末点拨
(二)具体说明
高二数学秋季主要学习两本书:必修3和选修2-1。选修2-1的讲义基本上与各学校同步,所以不再详说。必修3的前二章是算法和统计,内容以概念的介绍与了解为主,侧重于对知识本身的理解,在高考的考查时也只要求掌握最基本的内容,一般多以选择或填空的题型出现,比较简单。考虑这两章内容的性质与考查的难度,以及在暑期班已经预习的情况下,在秋季讲义中我们不专门安排对这两章的学习,学生只需掌握学校所学的基本内容即可。高考中这几部分内容的难度与考查的主要形式大家可以看后面附的20xx年新课标省份的高考题。对于算法中比较难掌握的程序语言等内容,高考中都不作要求。
必修3的第三章内容是概率初步,涉及到基本事件空间,需要计算基本事件的数目时,如果没有计数原理的基础知识,计算和理解会比较肤浅,而且高考中的概率题(可参考附录中《概率》部分),大多都会与计数原理相结合,因此在学习概率前我们补充了计数原理的基础知识。计数原理和概率的'更深入的内容,将在选修2-3中学习。
学完概率初步后,接下来是高一所学内容的简单复习,力求做到温故知新。同时本学期后半部分2-1的任务非常繁重,需要学习两大块重点内容:圆锥曲线、空间向量与立体几何,这两块内容都是高考解答题的必考内容,占到解答题的1/3,并且解析几何常常以压轴题形式出现。这里对以前内容的复习也是利用前半学期比较轻松的时间,为后面2-1部分的内容作好充分的准备。
高二数学教学计划11
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究函数、等差数列、等比数列的'性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求
1、培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(2)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
高二数学教学计划12
一、教学内容
高中数学的全部内容:掌握基本知识和技能,掌握数学的一般方法,即我们在教材和课程目标中要求掌握的数学对象的基本性质,以及处理数学问题的基本的、常用的数学思维方法,如归纳法、演绎法、分析法、综合法、分类讨论法、数形结合法等。提高学生的思维品质,适应一切变化,使数学学科的复习更加高效、优质。
学习《考试说明》,全面掌握教材知识,按照考试说明要求进行全面复习。抓教材是关键,打牢基础是我们的重要工作,提高学生解决问题的能力是我们的目标。
学习《课程标准》和《教材》,不仅要注意《课程标准》中调整的内容和变化的要求,还要注意今年《考试说明》不同版本的对比。结合去年新课改区高考数学评价报告,对《课程标准》进行横向和纵向分析,探究命题的变化规律。
二、学术状况分析
我今年分两个班教数学:(20)班和(23)班。和同组其他老师商量后,打算20年2月初开始第一轮;第二轮从2月底到5月初结束;第三轮将于5月初至5月底结束。
三、具体措施
(1)加强备考组教师之间的研究
1、学习《课程标准》,参考邻省20年的《考试说明》,明确复习教学的要求。
2、学习高中数学教材。处理好几个关系:课程标准、教学大纲、教材的关系;教材与补充教材的关系;重视基础知识与训练能力的关系。
3、研究新课程区高考试题,把握考试走向。尤其是山东、广东、江苏、海南、宁夏。
4、研究高考信息,关注考试动态。紧跟20个高考趋势,及时调整复习计划。
5、研究我校的数学教学情况,尤其是高二学生的学习情况。有针对性地制定切实可行的校本复习教案。
(二)重视教材,夯实基础,建立良好的知识结构和认知结构体系
教材是考试内容的'载体,是高考命题的依据,是学生智力的生长点,是最有价值的信息。
(三)增强适度创新能力
考试能力是高考的关键和永恒的主题。教育部已经明确指出,高考已经从知识的命题变成了能力的命题。
(四)加强数学思维和方法
数学不仅是一种重要的工具,也是一种思维方式和一种思想。注重数学思维方法的考查也是高考数学命题的显著特点之一。数学思维方法是数学知识的概括和提炼,包含在数学知识的发生、发展和应用过程中,可以在相关科学和社会生活中转移和广泛应用。在复习备考中,要把数学思维方法渗透到每一章、每一节、每一节课、每一套试题中。任何精心编制的数学试题,都包含着极其丰富的数学思维方法。如果注意渗透,及时讲解,反复强调,学生就会深入内心,形成良好的思维品质。只有当我们参加考试时,我们才会这样想
想方法贯穿于整个高中数学的始终,因此在进入高二复习时就需不断利用这些思想方法去处理实际问题,而并非只在高二复习将结束时去讲一两个专题了事。
(五)强化思维过程,提高解题质量
数学基础知识的学习要充分重视知识的形成过程,解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,注意多题一解、一题多解和一题多变。多题一解有利于培养学生的求同思维;一题多解有利于培养学生的求异思维;一题多变有利于培养学生思维的灵活性与深刻性。在分析解决问题的过程中既构建知识的横向联系,又养成学生多角度思考问题的习惯。
(六)认真总结每一次测试的得失,提高试卷的讲评效果
试卷讲评要有科学性、针对性、辐射性。讲评不是简单的公布正确答案,一是帮学生分析探求解题思路,二是分析错误原因,吸取教训,三是适当变通、联想、拓展、延伸,以例及类,探求规律。还可横向比较,与其他班级比较,寻找个人教学的薄弱环节。根据所教学生实际有针对性地组题进行强化训练,抓基础题,得到基础分对大部分学校而言就是高考成功,这已是不争的共识。
四、教学要求
第二轮专题过关,对于高考数学的复习,应在一轮系统学习的基础上,利用专题复习,更能提高数学备考的针对性和有效性。在这一阶段,锻炼学生的综合能力与应试技巧,不要重视知识结构的先后次序,需配合着专题的学习,提高学生采用配方法、待定系数法、数形结合,分类讨论,换元等方法解决数学问题的能力,同时针对选择、填空的特色,学习一些解题的特殊技巧、方法,以提高在高考考试中的对时间的掌控力。第三轮综合模拟,在前两轮复习的基础上,为了增强数学备考的针对性和应试功能,做一定量的高考模拟试题是必须的,也是十分有效的。该阶段需要解决的问题是:
1、强化知识的综合性和交汇性,巩固方法的选择性和灵活性。
2、检查复习的知识疏漏点和解题易错点,探索解题的规律。
3、检验知识网络的形成过程。
4、领会数学思想方法在解答一些高考真题和新颖的模拟试题时的工具性。
五、在有序做好复习工作的同时注意一下几点:
(1)从班级实际出发,我要帮助学生切实做到对基础训练完成,加强运算能力的训练,严格答题的规范化,如小括号、中括号等,特别是对那些书写像雾像雨又像风的学生要加强指导,确保基本得分。
(2)在考试的方法和策略上做好指导工作,如心理问题的疏导,考试时间的合理安排等等。
(3)与备课组其他老师保持统一,对内协作,对外竞争。自己多做研究工作,如仔细研读订阅的杂志,研究典型试题,把握高考走势。
(4)做到有练必改,有改必评,有评必纠。
(5)课内面向大多数同学,课外抓好优等生和边缘生,尤其是边缘生。班级是一个集体,我们的目标是水涨船高,而不是水落石出。
(6)教研组团队合作
虚心学习别人的优点,博采众长,对工作是很有利的。校长一直强调团队精神,所以我们要在竞争的基础上合作,合作的基础上竞争,合作也是我校的优良传统。我们几位老师准备做到一盘棋的思想,有问题一起分析解决,复习资料要共享。在工作中,教师间的合作就显得尤为重要。
(7)平等对待学生,关心每一位学生的成长,宗旨是教出来的学生不一定都很优秀,但肯定每一位都有进步;让更多的学生喜欢数学。力争以严、实、精、活的教风带出勤、实、悟、活的学风。
高二数学教学计划13
一、教学目标要求
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心, 具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,
二、教材分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生"看个究竟"的冲动,以达到培养其兴趣的目的。
2.通过"观察","思考","探究"等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
二学生情况分析:
我班学生对整体来说数学比较重视,学习数学的风气比其他学科要好一些,上课该活跃时能活跃,能讨论,该安静时能安静。平时训练题都是有难度的,学生喜欢做难题,钻研讨论很热烈,但整体来说,成绩不稳定,上学期第一次月考平均分跌到年级居中上,我们的差距在填空和选择,我们上了一周空间向量课,其他班没上,会考和期末考试同时都要复习考试时,我们坚持两头兼顾同时抓,我们落后在基本知识,而且试题难度虽然不高相反中等同学这次的`成绩倒超过了上面的同学,尤其是很多学生都考出了好成绩, 我是这个班的班主任,所以我关注的不仅仅是数学课,在课间或者其他时间接触的过程中发现我们班有好几个男同学特别活跃,精力非常充沛,课间经常追赶奔跑吵闹,这样的学生有利于活跃班级气氛,但自控能力差,他们都很聪明,但成绩都不太理想,如果长期不改正的话,最后不仅影响他们自己的成长,也必将影响到整个班级。一学期下来,已经有了很大改观,所以我还将更多地关注这类学生,帮助他们纠正不良习惯,将精力集中到学习上来,从而改变整个班级的风貌。
三、提高教学质量的具体措施。
1、认真落实,搞好集体备课。每周至少进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容"滚动式"编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。
3、抓好课堂,稳定数学优生,培养数学能力兴趣。要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的课余辅导十分重要。教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生,更不能忽视班上的学困生。
四、教学进度表
日期 周次 节/周 教学内容(课时)
3月1日~3月7日 1 5 一元二次不等式(组)与简单的线性规划(5)
8日~14日 2 6 基本不等式(3)测试与讲评(3)
15日~21日 3 6 命题及其关系(3),充分条件与必要条件(2),简单逻辑连接词(1)
22日~28日 简单逻辑连接词(2),全称量词与存在量词(2),复习(2)
29日~4月5日 5 6 曲线与方程(2),椭圆(4)
6日~12日 6 6 椭圆(2),双曲线(4)
13日~19日 7 6 ,抛物线(4),复习(2)
20日~26日 8 6 空间向量及其运算(5),立体几何中的向量方法(1)
27日~5月2日 9 6 立体几何中的向量方法(4),小结与复习(2)
3日~9日 10 6 期中考试
10日~16日 11 6 ,段考讲评(2),变化率与导数(4)
17日~23日 12 6 导数的计算(2)导数在研究函数中的应用(4)
24日~30日 13 6 生活中的优化问题举例(4),定积分的概念(2)
6月1日~7日 14 6 定积分的概念(2),微积分基本定理(2)、定积分的简单应用(2)
8日~14日 15 6 复习与测试(4),合情推理与演绎推理(2)
15日~21日 16 6 合情推理与演绎推理(2)、直接证明与间接证明(4)
22日~28日 17 6 数学归纳法(3),复习(3)
29日~7月4日 18 6 数系的扩充和复数的概念(3)、复数代数形式的四则运算(3)
5日~11日 19 6 期末复习(6)
12日~13日 20 6 期末考试
高二数学学习方法
1,培养良好的学习兴趣。
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?
(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?
(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。
2、 建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
高二数学教学计划14
一、指导思想
努力把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,立足掌握基本技能和基本能力,着力培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的'基础。坚持一切为了学生,为了学生一切,人人都能成功的教学理念。
高二数学教学计划15
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的'兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
三、教学措施:
1、认真落实,搞好集体备课。每周至少进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料《创新设计》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容滚动式编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。竞赛班的教学进度要加快,教学难度要有所降低,各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
高二年级数学科进度表
日期周次节/周教学内容(课时)附注
9月1日~9月7日15一元二次不等式(组)与简单的线性规划(5)正式上课
8日~14日26基本不等式(3)测试与讲评(3)中秋节放假1天
15日~21日36命题及其关系(3),充分条件与必要条件(2),简单逻辑连接词(1)
22日~28日46简单逻辑连接词(2),全称量词与存在量词(2),复习(2)
29日~10月5日56曲线与方程(2),椭圆(4)国庆节放假3天
6日~12日66椭圆(2),双曲线(4)
13日~19日76,抛物线(4),复习(2)
20日~26日86空间向量及其运算(5),立体几何中的向量方法(1)
27日~11月2日96立体几何中的向量方法(4),小结与复习(2)
3日~9日106期中考试
10日~16日116,段考讲评(2),变化率与导数(4)
17日~23日126导数的计算(2)导数在研究函数中的应用(4)
24日~30日136生活中的优化问题举例(4),定积分的概念(2)
12月1日~7日146定积分的概念(2),微积分基本定理(2)、定积分的简单应用(2)
8日~14日156复习与测试(4),合情推理与演绎推理(2)
15日~21日166合情推理与演绎推理(2)、直接证明与间接证明(4)
22日~28日176数学归纳法(3),复习(3)
29日~1月4日186数系的扩充和复数的概念(3)、复数代数形式的四则运算(3)元旦放假一天
5日~11日196期末复习(6)
12日~18日206期末考试
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学第一学期教学计划进度表,希望大家喜欢。
【高二数学教学计划】相关文章:
高二数学教学计划07-25
高二数学教学计划15篇01-19
高二上学期数学教学计划02-16
高二年级数学教学计划08-10
高二下学期数学教学计划09-28
高二化学教学计划02-04
高二数学教学反思04-03
高二数学教学总结 04-22
高二数学说课稿11-07